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1 Introduction

These lectures are largely based on two previous survey articles [6], [7], and
cover a selection of open problems with some new remarks and updates.
But they also give an introduction to the convexity conditions that are the
objects of study of this course.

We begin by considering the usual set-up for nonlinear elastostatics, in
which an elastic body occupies in a reference configuration the bounded
domain (i.e. open and connected set) Ω ⊂ R3 having Lipschitz boundary
∂Ω. We assume that the boundary can be decomposed as ∂Ω = ∂Ω1∪∂Ω2∪
N , where ∂Ω1, ∂Ω2 are relatively open and disjoint, and where N has zero
area (that is, its two-dimensional Hausdorff measure H2(N) = 0).

For a deformation y : Ω → R3, the deformation gradient

Dy(x) =

(

∂yi(x)

∂xj

)

is required to belong to M3×3
+ , where Mm×n = {real m× n matrices}, and

Mn×n
+ = {A ∈ Mn×n : det A > 0}. We suppose that y satisfies mixed

displacement zero-traction boundary conditions, so that

y|∂Ω1
= ȳ(·),

where ȳ : ∂Ω1 → R3 is given.
We further assume that the body is comprised of homogeneous material,

that is the material response is the same at each point x ∈ Ω. (Note that
this is not the same as having the same material at each point; think, for
example, of two elastic bands stuck together, one stretched relative to the
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other, so that there is no stress-free reference configuration.) We also assume
that the temperature is constant. The total elastic energy is then given by

I(y) =

∫

Ω

W (Dy(x)) dx, (1)

where the stored-energy function W : M3×3
+ → R is assumed to be C1

and bounded below (in fact we may and do assume that W ≥ 0). The
Piola-Kirchhoff stress tensor is then given by TR(A) = DAW (A).

Let ϕ : Ω → R3 be smooth with ϕ|∂Ω1
= 0. Formally computing

d

dτ
I(y + τϕ)|τ=0 = 0

we obtain the weak form of the Euler-Lagrange equation

∫

Ω

DAW (Dy) ·Dϕdx = 0 for all such ϕ. (WEL)

If y, ∂Ω1, ∂Ω2 are sufficiently regular then (WEL) is equivalent to

DivDAW (Dy(x)) = 0 for x ∈ Ω,
DAW (Dy(x))N(x) = 0 for x ∈ ∂Ω2,

}

where N(x) is the unit outward normal to ∂Ω2. (Thus the zero traction
boundary condition on ∂Ω2 appears as a natural boundary condition.)

1.1 Function Spaces

To what function space should y belong? This is part of the mathe-

matical model, since examples show that the minimum (or infimum) of I in
different function spaces can be different. We will assume that y belongs to
the (largest) Sobolev space W 1,1 = W 1,1(Ω,R3), where for 1 ≤ p ≤ ∞

W 1,p(Ω; R3) = {z : Ω → R3, ‖z‖1,p <∞}

‖z‖1,p =

(
∫

Ω

(|z|p + |Dz|p) dx

)
1

p

if 1 ≤ p <∞

= ess sup
x∈Ω

(|z(x)|+ |Dz(x)|) if p = ∞.

(For the formal definitions and basic facts see standard texts on Sobolev
spaces e.g. Adams & Fournier [2].)

If y ∈W 1,1 then y is absolutely continuous along a.e. line parallel to the
coordinate axes (see Morrey [27]). Hence deformations with planar cracks
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are excluded, though discontinuities on sets S(y) ⊂ Ω with H2(S(y)) = 0
may be possible, as for example in cavitation (see [5] and Section 1.4 below).
How should we decide on the ‘correct’ function space? We could hope to
do this by means of a passage from an atomistic/molecular model to a
continuum one. Such a ‘derivation’ of the continuum model would certainly
lead to a larger function space than W 1,1 (allowing fracture, for example)
and a modified energy functional. It would then be a task to understand
the status of minimizers of I in W 1,1 with respect to the modified theory
(e.g. as metastable states).

1.2 Properties of W

We make the following hypotheses on W . The first is frame-indifference:

W (RA) = W (A) for all R ∈ SO(3),A ∈ M3×3
+ ,

where SO(3) = {R ∈M3×3
+ : RTR = 1}, which holds if and only if

W (A) = W (U), U = (ATA)
1

2 .

The second is material symmetry:

W (AQ) = W (A) for all Q ∈ S,A ∈M3×3
+ ,

where S is the isotropy group of the material. The case S ⊃ SO(3) corre-
sponds to an isotropic material, for which we have the representation

W (A) = Φ(v1, v2, v3),

where the vi are the principal stretches (that is, the eigenvalues of U) and
Φ is symmetric with respect to permutations of the vi.

The third condition says that infinite energy is required to compress the
material to zero volume:

W (A) → ∞ as detA → 0 + . (2)

We set W (A) = ∞ if det A ≤ 0. Then I(y) ∈ [0,∞] is well defined for
y ∈W 1,1, and if I(y) <∞ then detDy(x) > 0 a.e..

Are there any other conditions on W satisfied by ‘all materials’ ? In the
older literature there was a feeling that there should be such ‘constitutive
inequalities’ that would correspond to ‘stress increasing with strain’ (for a
comprehensive discussion see Truesdell & Noll [34]). Two such candidates
were the strong ellipticity condition and the Coleman-Noll inequality. The
strong ellipticity condition is

D2W (A)(a ⊗N, a⊗ N) > 0, for all a,N ∈ R3, |N| = 1.
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where (a ⊗N)iα = aiNα, that is

d2

dt2
W (A + ta ⊗N)|t=0 =

∂2W (A)

∂Aiα∂Ajβ

aiNαajNβ > 0.

In particular this condition implies the reality of wave speeds in elastody-
namics.

We do not state the Coleman-Noll inequality here, but note that for an
isotropic material it implies that Φ(v1, v2, v3) is convex. It is easily seen that
this is not satisfied for rubber because rubber is almost incompressible. For
example, for moderately large v the convexity inequality

Φ

(

1

2
(v + v−1),

1

2
(v + v−1), 1

)

≤
1

2

(

Φ(v, v−1 , 1) + Φ(v−1, v, 1)
)

is not satisfied because the volume change 1
4(v+v−1)2 is large and thus the

left-hand side large compared to the right-hand side. Thus the Coleman-
Noll inequality is not generally satisfied.

In fact ‘stress increases with strain’ should be regarded as a stability
condition. For example, in one dimension consider the minimizers y of

I(y) =

∫ 1

0

W (yx) dx, subject to y(0) = 0, y(1) = λ > 0,

where yx = dy/dx. Suppose W ∈ C1(0,∞), W (p) → ∞ as p → 0+,

limp→0+
W(p)

p
= ∞. Let W ∗∗ be the convexification of W (that is the

greatest convex function less than or equal to W ). It is not difficult to show
that W ∗∗ is C1 (for a general result of this type see Kirchheim & Kristensen
[20]). A Weierstrass point p is a point at which W (p) = W ∗∗(p), so that
the tangent at p to the graph of W does not lie above the graph. Let

I∗∗(y) =

∫ 1

0

W ∗∗(yx) dx.

We can think of W ∗∗ as being the macroscopic stored-energy function cor-
responding to the mesoscopic stored-energy function W . In fact, setting
A = {y ∈W 1,1(0, 1) : y(0) = 0, y(1) = λ, yx > 0 a.e.} we have that

inf
y∈A

I(y) ≥ inf
y∈A

I∗∗(y) ≥ inf
y∈A

W ∗∗

(
∫ 1

0

yx dx

)

= W ∗∗(λ),

where the middle inequality follows from Jensen’s inequality. But any λ > 0
can be written as λ = µp + (1 − µ)q, where W (p) = W ∗∗(p),W (q) =
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W ∗∗(q), 0 ≤ µ ≤ 1, where 0 < p ≤ λ ≤ q < ∞ and W ∗∗(r) is affine for
r ∈ [p, q]. Thus

yλ(x) =

{

px, 0 ≤ x ≤ µ
pµ+ q(x− µ), µ ≤ x ≤ 1

is such that

I(yλ) = µW ∗∗(p) + (1 − µ)W ∗∗(q) = W ∗∗(λ).

Hence yλ is a minimizer, and infA I = infA I
∗∗. For any minimizer y∗

we have W (y∗x) = W ∗∗(y∗x) a.e., so that the only values of y∗x that can be
observed in minimizers (in fact even in strong local minimizers, i.e. local
minimizers in the C0 metric) are Weierstrass points. Also we have that
Wp(y

∗
x) = W ∗∗

p (λ) a.e., so that the stress is constant and a monotone func-
tion of the overall strain λ, even though no assumption has been made about
monotonicity of Wp(p) = dW (p)/p in p (i.e. of convexity of W ).

In higher dimensions the role played in one dimension by convexity is
played by quasiconvexity (in the sense of Morrey [26]). Let f : Mm×n →
R ∪ {+∞} be Borel measurable and bounded below. We say that f is
quasiconvex at A ∈Mm×n if

∫

Ω

f(A +Dϕ(x)) dx ≥

∫

Ω

f(A) dx

for any ϕ ∈ C∞
0 (Ω; Rm), and is quasiconvex if it is quasiconvex at every

A ∈ Mm×n. Here Ω ⊂ Rn is any bounded open set whose boundary ∂Ω
has zero n-dimensional Lebesgue measure. A standard scaling argument
shows that these definitions do not depend on Ω.

1.3 Roles of quasiconvexity in the calculus of variations

Existence of global minimizers (Morrey [26; 27], Acerbi & Fusco [1])
If f : Mm×n → R is quasiconvex and satisfies

C1|A|p −C0 ≤ f(A) ≤ C2(|A|p + 1) for all A ∈Mm×n, (3)

where p > 1, C0 and C1 > 0, C2 > 0 are constants, then

F(y) =

∫

Ω

f(Dy) dx

attains a global minimum on

A = {y ∈W 1,1(Ω; Rm) : y|∂Ω1
= ȳ}.
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Here we assume that Ω has Lipschitz boundary ∂Ω, ∂Ω1 ⊂ ∂Ω is Hn−1

measurable, and ȳ : ∂Ω1 → Rm is given such that A is nonempty. The
proof is by the direct method of the calculus of variations, using the fact that
under the growth conditions (3) quasiconvexity is necessary and sufficient
for F to be sequentially weakly lower semicontinuous on W 1,p(Ω; Rm). A
result of Ball & Murat [11] shows that if the minimum of F is attained
whenever suitable lower order terms g(y) are added to the integrand, then
W is quasiconvex. This shows that the direct method is the right method
for proving existence.

Relaxation (Dacorogna [13])
Under similar hypotheses we have

inf
A

F = inf
A

Fqc,

where

Fqc(y) =

∫

Ω

fqc(Dy) dx

and fqc is the quasiconvex envelope of f , i.e the supremum of all quasi-
convex functions g ≤ f . In elasticity this has the interpretation that for
problems (such as elastic crystals) for which the total elastic energy I does
not attain a minimum, the macroscopic stored-energy function correspond-
ing to the microscopic/mesoscopic stored-energy function W is W qc. In
Ball, Kirchheim & Kristensen [8] it is shown that if f ∈ C1 then fqc is C1.

Partial regularity of energy minimizers (Evans [15], Kristensen &
Taheri [24])

Under similar hypotheses, with a slightly strengthened version of qua-
siconvexity, and assuming f smooth, any global (or W 1,p-local) minimizer
is smooth on the complement of a closed set E of n-dimensional Lebesgue
measure zero. For Lipschitz minimizers the Hausdorff dimension of the
singular set is strictly less than n (see Kristensen & Mingione [23]).

Necessary and sufficient conditions for local minimizers
Again consider

F(y) =

∫

Ω

f(Dy) dx,

where f ∈ C2 is bounded below, and suppose that y ∈ A ∩ C1(Ω̄; Rm) is a
W 1,p local minimizer of F in A, i.e. for some ε > 0 we have that

F(z) ≥ F(y) for all z ∈ A with ‖z − y‖1,p < ε.
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Then
(NC1) y satisfies (WEL):

∫

Ω

Df(Dy) ·Dϕdx = 0 for all smooth ϕ with ϕ|∂Ω1
= 0.

(NC2) (Positivity of the second variation)
For such ϕ

d2

dτ2
F(y + τϕ)|τ=0 ≥ 0,

that is
∫

Ω

D2
Af(Dy)(Dϕ,Dϕ) dx ≥ 0 for all smooth ϕ with ϕ|∂Ω1

= 0.

(NC3) (Interior quasiconvexity)
If x0 ∈ Ω then f is quasiconvex at Dy(x0).

(NC4) (Quasiconvexity at the free boundary) (Ball & Marsden [9])
Let x1 ∈ ∂Ω2 = ∂Ω\∂Ω1. We assume that ∂Ω is C1 with unit outward

normal N(x1) at x1. Let B−(x1) be the half-ball {x ∈ Rn : |x| < 1,x ·
N(x1) < 0}. Then

∫

B−(x1)

f(Dy(x1) +Dϕ(z)) dz ≥

∫

B−(x1)

f(Dy(x1)) dz

whenever ϕ ∈ C∞(B−(x1); R
m) with ϕ|∂B−(x1)∩∂B(0,1) = 0.

(NC3) and (NC4) are generalizations of the classical Weierstrass condi-
tion. It is natural to ask whether (NC1)-(NC4) can be slightly strengthened
to form a set of sufficient conditions for y to be a strong local or W 1,p local
minimizer. For example, (NC2) can be strengthened to

(NC2)
+

∫

Ω

D2
Af(Dy)(Dϕ,Dϕ) dx ≥ µ

∫

Ω

|Dϕ|2dx

for all smooth ϕ with ϕ|∂Ω1
= 0, for some µ > 0. This has been achieved in

very interesting recent work of Grabovsky & Mengesha [17], in the more gen-
eral context of integrands f(x,y, Dy) satisfying suitable pth power growth
conditions, thus generalizing the classical Weierstrass sufficiency theorem
to this case. The idea is to split an arbitrary variation into a ‘weak’ and a
‘strong’ part.

Unfortunately none of these results applies directly to elasticity, since the
growth conditions assumed are inconsistent with the condition (2). This is
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related to the lack of a tractable characterization of quasiconvexity, which
might lead to different proof techniques. It is known (Kristensen [22]) that
there is no local characterization. In general we have that for f taking finite
values

f polyconvex ⇒ f quasiconvex ⇒ f rank-one convex.

Here f polyconvex means that f(A) = g(J(A)) for some convex function
g of the list J(A) of all minors of A, while f rank-one convex means that
t 7→ f(A + ta ⊗ N) is convex for all a ∈ Rm,N ∈ Rn. The converse
implications are false for m > 1, n > 1 except that when m = 2 it is not
known whether f rank-one convex implies f quasiconvex (for m > 2 this is
the famous counterexample of Šverák [32]). Although there are examples
of quasiconvex f that are not polyconvex, no useful class of examples is
known. Existence theorems based on polyconvexity remain of interest both
because of this lack of examples and because they can handle the blow-up
of W (A) as det A → 0+. The following such result is due to Müller, Qi &
Yan [28], following [3].

Theorem 1.1. Suppose that W satisfies

(H1) W is polyconvex, i.e. W (A) = g(A,cofA, detA) for all A ∈ M3×3
+

and some convex g,
(H2) W (A) ≥ c0(|A|2 + |cofA|

3

2 ) − c1, for all A ∈M3×3
+ , where c0 > 0.

Then if A is nonempty, there exists a global minimizer y∗ of I in A.

1.4 Open problems in elastostatics

When is the minimizer y∗ smooth? No such result is known even in
the simplest special cases, such as

W (A) = |A|2 + |A|4 + h(det A),

where h is smooth, convex, with h(δ) → ∞ as δ → 0+, h(δ)
δ

→ ∞ as δ → ∞.
Although there are counterexamples to regularity for minimizers of

F(y) =

∫

Ω

f(Dy) dx,

where f is strictly convex (see Nečas [29], Šverák & Yan [33]), none are
known for the dimensions m = n = 2 or 3.

Does y∗ satisfy (WEL)? The difficulty is that (WEL) requires that
DAW (Dy∗) be at least locally integrable, but I(y∗) <∞ only tells us that
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W (Dy∗) ∈ L1, and |DAW (A)| may be much bigger than W (A) when |A|
is large or det A is small, so that there is no obvious way to pass to the
limit t→ 0 in the difference quotient

∫

Ω

W (Dy∗ + tDϕ) −W (Dy∗)

t
dx.

In fact it need not be the case that det(Dy∗(x) +Dϕ(x)) > 0.
There is no general such theorem even in the one-dimensional calculus of

variations. An example (see Ball & Mizel [10]) is the problem of minimizing

I(u) =

∫ 1

−1

[(x4 − u6)2u28
x + εu2

x] dx (4)

subject to u(−1) = −1, u(1) = 1, where 0 < ε < ε0 << 1, which has a
global minimizer u∗ with

u∗(x) ∼ |x|−
1

3x

as x ∼ 0. In one dimension (WEL) is equivalent to the integrated form

fux
=

∫ x

0

fu ds+ const.,

but here fux
(x, u∗, u∗x) is unbounded.

It is possible to derive two different forms of the Euler-Lagrange equation
for (1) by taking variations that are compositions, thus preserving the sign
of the determinant. For example, by considering the variation

yτ (x) = y∗(x) + τϕ(y∗(x))

we can prove that Cauchy’s equilibrium equations hold in the weak form

∫

Ω

[

DAW (Dy∗)Dy∗T ·Dϕ(y∗)
]

dx = 0

for all ϕ ∈ C1(R3; R3) with ϕ,Dϕ uniformly bounded and such that ϕ(y∗)|∂Ω1
=

0, provided that W satisfies

|DAW (A)AT | ≤ K(W (A) + 1) for all A ∈M3×3
+ ,

a condition that holds for many models of natural rubber (for the details
see [7]).
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Prove or disprove that under suitable growth conditions on W ,
detDy∗(x) ≥ ε > 0. For this we seem to need some variation that in-
creases detDy∗ where it is small. Perhaps related to this is the open prob-
lem

If y ∈ W 1,p(Ω,R3) is invertible, can y be approximated in W 1,p by
piecewise affine invertible maps? The difficulty can be seen even in
two dimensions, where a Lipschitz y can map three points A,B, C to points
A′, B′, C ′ in such a way that the orientation of the triangle ABC is opposite
to that of A′B′C ′. For some recent partial results see Bellido & Mora-Corral
[12], Mora-Corral [25].

If Ω is homeomorphic to a ball, ∂Ω = ∂Ω1, W strictly polycon-
vex, are minimizers (or sufficiently smooth equilibrium solutions)
unique? There are well-known counterexamples to uniqueness when ∂Ω1 6=
∂Ω or if Ω has holes (see [7] Section 2.6). The answer to the problem as
stated is probably no, as explained in [7]. A recent paper by Spadaro [31]
gives some counterexamples with y : Ω → R3,Ω ⊂ R2, with injective
boundary values, using ideas from minimal surfaces. However it is not clear
how to extend these examples to y : Ω → Rn, n = 2 or n = 3, where
Ω ⊂ Rn and the boundary values are injective.

Now consider the example

W (A) = |A|2 + h(det A),

where h is convex, h(δ) → ∞ as δ → 0, h(δ)
δ

→ ∞ as δ → ∞. This W is
polyconvex, but does not satisfy the growth condition (H2). It is an example
of a function that is W 1,p quasiconvex, i.e.

∫

Ω

W (A +Dϕ(x)) dx ≥

∫

Ω

W (A) dx for all ϕ ∈W 1,p
0 (Ω; R3)

if p ≥ 3, but not if p < 3. In fact if A = λ1, with λ > 0 sufficiently large,
we can find a radial deformation of the form

y(x) =
r(R)

R
x

with r(0) > 0, r(1) = λ, and I(y) < I(λ1). This is the phenomenon of
cavitation.

For such a W , is the minimum of I attained? Here is a strange
argument, perhaps suggesting that the answer is no. Let us suppose that
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the minimum is attained for the cube Q = (−1, 1)3 and linear boundary
data y|∂Q = Ax, and that the minimizer y∗ is C1 up to the flat parts of
the boundary ∂Q. We can deduce from this that Dy∗ is constant on each
face of the cube. To see this pick some point a in the interior of one face of
the cube, having normal e1 say, and another point b in the interior of the
opposite face. Now for some small ε > 0 consider the two cubes Q1 = εQ
and Q2 = ε(Q + a − b). These cubes are disjoint, interior to Q, and their
closures meet on part of the surface {x : x ·e1 = εa ·e1} which has εa as an
interior point. Now let c1 = 0, c2 = ε(a−b), ε1 = ε2 = ε and choose cubes
Qj = εjQ+ cj, j ≥ 3 such that the {Qi}

∞
i=1 are disjoint with

meas

(

Q\

∞
⋃

i=1

Qi

)

= 0,

which is possible by Vitali’s covering theorem. Define for x ∈ Q̄

y(x) =

{

Aci + εy∗
(

x−ci

ε

)

if x ∈ Qi,
Ax otherwise.

Then y ∈ Ax +W 1,p
0 (Q; R3) and

I(y) =

∞
∑

i=1

∫

Qi

W

(

Dy∗

(

x − ci

ε

))

dx = I(y∗).

Hence y is also a minimizer, and since y is piecewise C1 in the neigh-
bourhood of εa it follows that in this neighbourhood it satisfies (WEL).
Consequently the stress at εa across the surface {x : x · e1 = εa · e1} is
continuous, i.e.

DW (Dy∗(a))e1 = DW (Dy∗(b))e1.

But since W is strictly polyconvex it is strictly rank-one convex, and hence
by a result in [4] (see also Knowles & Sternberg [21]) we have Dy∗(a) =
Dy∗(b). Since a and b are arbitrary points on opposite faces of Q the claim
follows.

Can we incorporate cavitation into a more general theory of frac-
ture? The ‘free-discontinuity’ variational models of fracture (see e.g. Franc-
fort & Marigo [16]) are based on minimization of an energy such as

I(y) =

∫

Ω

W (Dy) dx +

∫

Sy

g(y+ − y−, νy) dH2,
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where y belongs to the space SBV (Ω) of mappings of special bounded varia-
tion, i.e. those whose gradient is a bounded measure having no Cantor part.
Sy denotes the set of jump points of y, νy is the normal to Sy at y, and
y+,y− are the traces of y from the positive and negative sides of Sy respec-
tively. It is tempting to think of a progression from zero-dimensional (cav-
itation) to one-dimensional (line singularities) to two-dimensional (cracks)
fracture singularities, and there is some evidence that, for example, cavities
can coalesce to form cracks. Thus a framework in which all these kinds
of singularities can energetically compete is desirable. Recent progress in
this direction, leading to a theory in which both cavitation and cracks are
possible, has been made by Henao & Mora-Corral [18; 19].

1.5 Dynamics

We end with some brief remarks on dynamics. The balance laws of
linear momentum and energy lead to the pointwise forms of the governing
equations:

ρRytt − DivTR − b = 0,
(1
2ρR|yt|

2 + U)t − b · yt − Div (ytTR) + DivqR − r = 0,

}

(5)

where ρR > 0 is the density in the reference configuration, b is the body
force, U is the internal energy density, and qR the reference heat flux vector.

The balance of angular momentum holds if and only if the Cauchy stress
tensor

T = (detDy)−1TR(Dy)T

is symmetric.
For a thermoelastic material, we assume that TR, the entropy density

η, the Helmholtz free energy ψ = U − θη and qR depend on Dy, θ, and
Grad θ. Use of the Clausius-Duhem inequality then leads to

ψ = ψ(Dy, θ), TR = DAψ, η = −Dθψ

and

−qR · Grad θ ≥ 0.

Frame-indifference is equivalent to

ψ(RA, θ) = ψ(A, θ) for all R ∈ SO(3),

and this implies that T is symmetric. We need to solve (5) for the unknowns
y and θ.
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If we assume that θ(x, t) = θ0 = constant then we obtain the equation
of motion

ρRytt − DivDAW (Dy) − b = 0,

where W (A) = ψ(A, θ0). This is a multi-dimensional system of conser-
vation laws about which very little is known. One might ask, however, if
polyconvexity or quasiconvexity play any role. Whereas nothing seems to
be known about their implications for existence of solutions, there are two
such results as regards uniqueness:

1. (Dafermos [14]) If W is quasiconvex then Lipschitz solutions of uniformly
small oscillation are unique within the class of weak solutions.

2. (Le Floch, Qin [30]) If W is polyconvex, the hypothesis of uniform small
oscillation in the Dafermos result can be removed.

What if we add dissipation? The simplest situation is that of viscoelas-
ticity of rate type, for which the equation of motion is

ρRytt −TR(Dy, Dyt) = 0.

Frame-indifference of TR holds if and only if

TR(Dy, Dyt) = DyG(U,Ut),

where G is symmetric. No large data existence theorem is known for this
case (though one would expect to have one that would cover even non-
quasiconvex elastic energies). With a good existence and uniqueness theory
we could study the questions of approach to equilibrium and address qual-
itative features of the dynamic evolution.
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